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Photooxygenation of methoxy-substituted 1,1-diarylethenes
and 1,1,8,8-tetraaryl-1,7-octadienes catalyzed by titanium diox-
ide proceeded via photoinduced electron transfer to give 3,3,6,6-
tetraaryl-1,2-dioxanes in high yields. The photooxygenation was
remarkably accelerated by the addition of Mg(ClO4)2.

Semiconductor-catalyzed photoreactions of organic mole-
cules are of current interest.1 Semiconductors such as TiO2,
CdS, ZnS are utilized as redox type heterogeneous photocata-
lysts for various types of photoinduced electron tranfer reactions
using photoexcitation from their valence bands to conduction
bands.2 Hitherto various alkenes are exposed to the semiconduc-
tor-catalyzed photoreactions in the presence of oxygen, and it is
already known that the alkenes are converted to ketones, alde-
hydes, epoxides, hydroperoxides, and so on.3 However, the effi-
ciency, selectivity, and chemical yields are not necessarily high
in these photoreactions. To explore the synthetic utility for such
reactions, we have investigated the photooxygenation of me-
thoxy-substituted 1,1-diarylethenes and found that 3,3,6,6-tet-
raaryl-1,2-dioxanes were obtained in high yields.

Photoirradiation of an acetonitrile solution containing 1,1-
bis(p-methoxyphenyl)ethene (1a) in the presence of suspended
TiO2 and Mg(ClO4)2 under a constant stream of dioxygen
through a Pyrex filter by a 300W-high pressure mercury lamp
for 40min afforded 3,3,6,6-tetrakis(p-methoxyphenyl)-1,2-di-
oxane (2a) in a 97% isolated yield (Scheme 1, Table 1). In the
absence of Mg(ClO4)2, 2a was slowly formed accompanying
methoxy-substituted benzophenone 3a. Photoreaction of p-
chloro derivative 1b gave a small amount of benzophenone de-
rivative 3b without any formation of 2b. Photooxygenation of
1,1,8,8-tetrakis(p-methoxyphenyl)-1,7-octadiene (4a) in the
presence of Mg(ClO4)2 proceeded intramolecularly to give

trans-fused 1,2-dioxane derivative 5a in a 71% isolated yield.
In the absence of Mg(ClO4)2, prolonged photoirradiation was re-
quired to obtain 5a. Addition of other inorganic salts such as
KClO4, NaClO4, LiClO4, and LiBF4 also enhanced the rate of
the photooxygenation, but their efficiency was lower than that
of Mg(ClO4)2. Photoreaction of unsubstituted 1,1,8,8-tetraphen-
yl-1,7-octadiene (4b) resulted in almost recovery of 4b.

Irradiation of TiO2 in acetonitrile causes the promotion of an
electron into the conduction band (�0:8V vs SCE) to generate a
hole in the valence band (þ2:4V vs SCE).1,4 One electron trans-
fer from 1a (Eox ¼ 1:32V vs SCE in CH3CN)

5 and 4a (Eox ¼
0:95V vs Ag/Agþ in CH3CN)

6 to the valence band should take
place as an exothermic process to produce the radical cations of
these alkenes, because their oxidation potentials are sufficiently
low.1a,b In addition, electron transfer from the conduction band
to O2 (E0

red ¼ �0:86V vs SCE in CH3CN)
7 is thermodynami-

cally permissible process to produce O2
��
.1a,3a,b,g From these re-

sults, we propose a plausible mechanism for the TiO2-catalyzed
photooxygenation of 1,1-diarylethenes as exemplified in
Scheme 2 using the photoreaction of 4a. The initial step is the
excitation of TiO2 followed by one-electron transfer from 4a
to the valence band of TiO2 to produce monomer radical cation
of 4a. The monomer radical cation of 4a cyclizes intramolecu-
larly to give distonic radical cation 6a via dimer radical cation
of 4a. The attack of triplet dioxygen on the 1,4-radical cation
6a generates 1,6-radical cation 7a which gives 1,2-dioxane de-
rivative 5a by one-electron reduction. The other possible path-
way for the photooxygenation is the attack of O2

��
to 6a. Forma-

tion of benzophenone derivative 3a can be explained by the
decomposition of dioxetane 8a, which is produced by the oxy-
genation of monomer radical cation. The enhancement of the ef-
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Scheme 1.

Table 1. Photooxygenation of 1,1-Diarylethenes Catalyzed by
Titanium Dioxidea

Substrate Additive Irradiation Products and yieldsb Recovery of

time/min substrateb

1a none 40 2a (6%), 3a (10%) 56%

1a Mg(ClO4)2 40 2a (97%) 0%

1b none 40 3b (12%)c 88%c

1b Mg(ClO4)2 40 3b (8%) 73%

4a none 40 5a (9%)c 91%c

4a none 960 5a (75%)c, 3a (25%)c 0%

4a Mg(ClO4)2 40 5a (71%) 0%

4a KClO4 40 5a (34%)c 66%c

4a NaClO4 40 5a (25%) 28%

4a LiClO4 40 5a (41%) 44%

4a LiBF4 40 5a (51%) 40%

4b none 40 — 97%

4b Mg(ClO4)2 40 — 87%

a Conditions: Substrate (0.25mmol), TiO2 (10mg), additive (0.125mmol),

CH3CN (15mL), oxygen bubbling, rt. b Isolated yields. c Determined by 1H

NMR.
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ficiency by the addition of Mg(ClO4)2 can be explained by the
suppression of back electron transfer from TiO2

� to 4aþ
�
due

to the interaction between Mg2þ and ionic species such as TiO2
�

and O2
��

or the interaction between ClO4
� and 4aþ

�
,2r,8–10

Photooxygenation of 1a and 4a to give 1,2-dioxanes under
photoinduced electron transfer conditions have already been re-
ported in homogeneous solutions using electron accepting pho-
tosensitizers such as 9,10-dicyanoanthracene.5,6,11 But the pres-
ent system using TiO2 as a heterogeneous photocatalyst has a
notable advantage; the photocatalyst can be removed only by
the filtration of the reaction mixture. For synthetic use, TiO2 is
a clean, low cost, efficient, and facile tool for the synthesis of
3,3,6,6-tetraaryl-1,2-dioxanes.

In conclusion, it was demonstrated that 1,2-dioxane deriva-
tives can be synthesized by the photooxygenation of electron-
rich diarylalkenes by use of TiO2 as a heterogeneous photocata-
lyst. Scope and mechanisms are now under investigation.
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